Nguyễn Minh Trí

Posts Tagged ‘Toán tiểu học’

Olympic Toán tuổi thơ lần thứ 7 từ ngày 9 -11/6 tại Lào Cai

Posted by nguyenminhtri on 06/06/2011

(GD&TĐ) – Kỳ thi Olympic Toán tuổi thơ toàn quốc lần thứ 7 sẽ được tổ chức từ ngày 9 đến 11 tháng 6 năm 2011 tại trường tiểu học Hoàng Văn Thụ, thành phố Lào Cai, tỉnh Lào Cai.

Đoàn Lào Cai giành Huy chương Vàng Olympic Toán tuổi thơ năm 2010 tại tỉnh Long An.
   Đoàn Lào Cai giành Huy chương Vàng Olympic Toán tuổi thơ năm 2010 tại tỉnh Long An. (ảnh baolaocai.vn)

Kỳ thi Olympic Toán tuổi thơ năm nay có 28 tỉnh, thành phố với gần 300 thí sinh THCS và tiểu học dự thi, chia thành 47 đội thi. Cuộc thi được tổ chức nhằm tạo điều kiện giao lưu học hỏi giữa các học sinh yêu toán bậc Tiểu học và THCS cổ vũ phong trào “Hai tốt” ở các trường trong cả nước, đồng thời tạo một môi trường để các thầy cô giáo trao đổi về kinh nghiệm giảng dạy toán.

Trải qua 6 lần tổ chức, Cuộc thi Olympic Toán Tuổi Thơ đã thu hút được đông đảo thí sinh tham dự và cũng đã dành được nhiều thành quả đáng khích lệ.

Theo đánh giá của Ban tổ chức, kỳ thi năm nay có số lượng thí sinh và các tỉnh tham gia đông, hứa hẹn chất lượng và hiệu quả của kỳ thi tiếp tục được nâng lên.

Kim Hoàn

Nguồn: giaoducthoidai.vn

Posted in Tin Giáo dục, Toán tiểu học | Tagged: , | Leave a Comment »

Một vài phương pháp hay giải bài toán tính tuổi

Posted by nguyenminhtri on 04/06/2011

Trong nhiều loại toán, người ta thường để ý đến những đại lượng không thay đổi. Đối với bài toán tính tuổi thì đại lượng đó chính là hiệu số giữa tuổi của hai người. Dựa vào đại lượng này ta có thể giải được nhiều bài toán tính tuổi.

Bài toán 1 : Hiện nay, tuổi bố gấp 7 lần tuổi con. Sau 10 năm nữa, tuổi bố gấp 3 lần tuổi con. Tính tuổi mỗi người hiện nay.

Phân tích : Bài toán yêu cầu tính số tuổi của hai bố con hiện nay nhưng chỉ cho biết :
– Tỉ số tuổi của hai bố con ở hai thời điểm khác nhau.
– Khoảng cách thời gian giữa hai thời điểm đó.
Nhưng ta có thể dễ dàng phát hiện ra một điều kiện nữa của bài toán, đó là “hiệu số tuổi của hai bố con là không đổi”. Từ đó ta có thể giải được bài toán như sau.

Giải : Hiện nay, nếu tuổi con là 1 phần thì tuổi bố là 7 phần như thế. Ta có sơ đồ thứ nhất :
?
Tuổi con  :  |——-|                         ?
Tuổi bố :     |——-|——-|——-|——-|——-|——-|——-|

Hiệu số tuổi của hai bố con hiện nay là : 7 – 1 = 6 (phần)
Hiện nay tỉ số giữa tuổi con và hiệu số tuổi của hai bố con là 1 : 6 = 1/6
Sau 10 năm nữa, nếu tuổi con là 1 phần thì tuổi bố là 3 phần như thế (mỗi phần bây giờ có giá trị khác mỗi phần ở trên). Ta có sơ đồ thứ hai :
?
Tuổi con  :  |——-|       ?
Tuổi bố :     |——-|——-|——-|

Sau 10 năm hiệu số tuổi của hai bố con là : 3 – 1 = 2 (phần)
Sau 10 năm tỉ số giữa tuổi con và hiệu số tuổi của hai bố con là 1 : 2 = 1/2
Vì hiệu số tuổi của hai bố con không bao giờ thay đổi nên ta có thể so sánh về tỉ số giữa tuổi con hiện nay và tuổi con sau 10 năm nữa.
– Tuổi con hiện nay bằng 1/6 hiệu số tuổi của hai bố con.
– Tuổi con sau 10 năm nữa bằng 1/2 hay 3/6 hiệu số tuổi của hai bố con.
Vậy tuổi con sau 10 năm nữa gấp 3 lần tuổi con hiện nay. Ta có sơ đồ tuổi con ở hai thời điểm :
?
Hiện nay  :         |——-|      10
Sau 10 năm:      |——-|——-|——-|

Tuổi con hiện nay là : 10 : 2 = 5 (tuổi)
Tuổi bố hiện nay là : 5 x 7 = 35 (tuổi)
Đáp số : Con : 5 tuổi ; Bố : 35 tuổi

Bài toán 2 : Trước đây 4 năm tuổi mẹ gấp 6 lần tuổi con. Sau 4 năm nữa, tỉ số giữa tuổi con và tuổi mẹ là 3/8 Tính tuổi mỗi người hiện nay.

Phân tích : Bài toán này đặt ra ba thời điểm khác nhau (Trước đây 4 năm, hiện nay và sau đây 4 năm). Nhưng chúng ta chỉ cần khai thác bài toán ở hai thời điểm : Trước đây 4 năm và sau đây 4 năm nữa. Ta phải tính được khoảng cách thời gian giữa hai thời điểm này. Bài toán này có thể giải tương tự như bài toán 1.

Giải : Trước đây 4 năm nếu tuổi con là 1 phần thì tuổi mẹ là 6 phần như thế.
Hiệu số tuổi của hai mẹ con là : 6 – 1 = 5 (phần)
Vậy tỉ số giữa tuổi con và hiệu số tuổi của hai mẹ con là 1 : 5 = 1/5
Sau 4 năm nữa, nếu tuổi con được chia thành 3 phần bằng nhau thì tuổi mẹ sẽ có 8 phần như thế.
Hiệu số tuổi của hai mẹ con là : 8 – 3 = 5 (phần)
Vậy sau 4 năm nữa tỉ số giữa tuổi con và hiệu số tuổi của hai mẹ con là 3 : 5 = 3/5
Vì hiệu số tuổi của hai mẹ con là không thay đổi nên ta có thể so sánh tuổi con trước đây 4 năm và tuổi con sau đây 4 năm. Ta có tuổi con sau 4 năm nữa gấp 3 lần tuổi con trước đây 4 năm và tuổi con sau 4 năm nữa hơn tuổi con trước đây 4 năm là : 4 + 4 = 8 (tuổi).
Ta có sơ đồ tuổi con ở hai thời điểm :
?
Trước đây 4 năm :        |——-|      8
Sau đây 4 năm:             |——-|——-|——-|

Tuổi con trước đây 4 năm là : 8 : (3 – 1) = 4 (tuổi)
Tuổi mẹ trước đây 4 năm là : 4 x 6 = 24 (tuổi)
Tuổi con hiện nay là : 4 + 4 = 8 (tuổi)
Tuổi mẹ hiện nay là : 24 + 4 = 28 (tuổi)
Đáp số : Con : 8 tuổi ; Mẹ : 28 tuổi

Chú ý : Để vận dụng tốt thủ thuật giải toán này, các em cần nắm vững kiến thức về tỉ số và đại lượng không đổi đối với bài toán tính tuổi. Các em có thể giải quyết được nhiều bài toán khó của dạng toán tính tuổi bằng thủ thuật này đấy. Hãy thử sức mình với các bài toán sau.

Bài 1 : Hiện nay tuổi anh gấp 3 lần tuổi em. Sau 14 năm nữa, tỉ số giữa tuổi anh và tuổi em là 5/4 Tính tuổi mỗi người hiện nay.

Bài 2 : Trước đây 2 năm, tỉ số giữa tuổi An và tuổi bố là 1/4. Sau 10 năm nữa, tỉ số giữa tuổi bố và tuổi An là 11/5. Tính tuổi mỗi người hiện nay.

Bài 3 : Trước đây 4 năm, tuổi bố gấp 7 lần tuổi con và tuổi ông gấp 2 lần tuổi bố. Sau 4 năm nữa, tỉ số giữa tuổi cháu và tuổi ông là 3/16. Tính tuổi mỗi người hiện nay.
phamkhacl – Giới thiệu

(Sưu tầm)

Posted in Toán tiểu học | Tagged: , | Leave a Comment »

Tìm giá trị lớn nhất của A + B (toán tiểu học)

Posted by nguyenminhtri on 04/06/2011

Bài toán 1 : Cho 2 số A và B có 5 chữ số và A/B = 1/2

Tìm giá trị lớn nhất của A + B.

Đáp số : 145593.

Có thể nói bài toán trên là một dạng lạ so với các dạng bài mà ta thường gặp trong các đề thi học sinh giỏi ở Việt Nam. Là một người gắn bó với toán tiểu học nhiều năm, tôi cảm thấy hứng thú với bài toán trên và đã tiến hành giải bài toán.

Lời giải : A + B đạt giá trị lớn nhất khi B đạt giá trị lớn nhất. Vì B = A x 2, vậy B là số chẵn lớn nhất có 5 chữ số.

Do đó B = 99998, suy ra A = 99998 : 2 = 49999.

Vậy A + B lớn nhất là : 99998 + 49999 = 149998.

Rõ ràng A, B đảm bảo điều kiện của bài toán, nhưng kết quả 149998 không đúng với đáp số đã nêu là 145593.

“Chẳng lẽ đáp số sai ?” – Đó là ý nghĩ vụt lóe lên trong óc tôi. Nhưng lại có ý nghĩ khác đến với tôi, nếu đáp số sai thì bài toán lại quá tầm thường. Vì vậy tôi cho rằng đề bài có điều gì đó chưa ổn (có thể do lỗi in ấn). Sau khi suy nghĩ và cân nhắc, tôi đã sửa lại bài toán như sau :

Bài toán 2 : Cho A, B là hai số có 5 chữ số ; mỗi số gồm 5 chữ số khác nhau và các chữ số của A và B cũng khác nhau. Tìm A, B để và A + B có giá trị lớn nhất.

Sau đó tôi đã tiến hành giải bài toán trên và đã thu được hai kết quả :

1) A = 48531 ; B = 48531 x 2 = 97062 và A + B = 48531 + 97062 = 145593 là đáp số đã nêu trong bài toán.

2) A = 48651 ; B = 48651 x 2 = 97302 và A + B = 48651 + 97302 = 145953.

Như vậy kết quả này vẫn chưa đúng với đáp số đã nêu.

Các bạn thử cùng trao đổi nhé !

Nguyễn Hùng Quang (Khoa Tiểu học – Trường CĐSP Hà Nội)

Sưu tầm

Posted in Toán tiểu học | Tagged: , | Leave a Comment »

Bài kiểm tra số 2 – Lớp tự chọn Toán K33

Posted by nguyenminhtri on 01/05/2011

Đề bài và đáp số

Bảng điểm thành phần môn Bồi dưỡng học sinh giỏi: download

Posted in Toán tiểu học | Tagged: | Leave a Comment »

Quy đồng tử số để giải toán

Posted by nguyenminhtri on 28/04/2011

Nguồn: Toán tuổi thơ 1

Posted in Toán tiểu học | Tagged: , | Leave a Comment »

Dùng sơ đồ diện tích để giải bài toán có ba đại lượng

Posted by nguyenminhtri on 28/04/2011

Dùng sơ đồ diện tích chúng ta sẽ giải nhanh các bài toán có nội dung đề cập đến ba đại lượng vì đã đưa về bài toán trực quan là bài toán diện tích hình chữ nhật.

Sơ đồ diện tích được dùng để giải các bài toán có nội dung đề cập đến ba đại lượng. Giá trị của một trong ba đại lượng bằng tích các giá trị của hai đại lượng kia. Dùng sơ đồ diện tích chúng ta sẽ giải nhanh các bài toán đó vì đã đưa về bài toán trực quan là bài toán diện tích hình chữ nhật. Sau đây là một số thí dụ:
Ví dụ 1:
Một ô tô đi từ A đến B với vận tốc 30km/giờ, sau đó đi từ B quay về A với vận tốc 40km/giờ. Thời gian đi từ B về A ít hơn thời gian đi từ A đến B là 40 phút. Tính độ dài quãng đường AB.
Phân tích: Vì quãng đường AB (s = v x t) không đổi, nên ta có thể xem vận tốc (v) là chiều dài của một hình chữ nhật và thời gian (t) là chiều rộng của hình chữ nhật đó. Vẽ sơ đồ:

Giải: Ta có 40 phút = 2/3 giờ

    Nếu ô tô đi từ B về A với vận tốc 30 km/giờ thì sau khoảng thời gian dự định đi từ B về A, ô tô còn cách A một quãng đường là:
    30 x 2/3 = 20 (km)
    Sở dĩ có khoảng cách này là vì vận tốc xe giảm đi:
    40 – 30 = 10 (km/h)
    Thời gian ôtô dự định đi từ B về A là:
    20 : 10 = 2 (giờ)
    Quãng đường AB dài là:
    40 x 2 = 80 (km)
    Đáp số: 80 km
    Chú ý là s1 = s2

Ví dụ 2:

Bạn Toán đưa tiền dự định mua một số quyển vở loại 2500 đồng/ quyển. Nhưng đến cửa hàng chỉ còn vở loại 3000 đồng/quyển. Toán cứ băn khoăn có nên mua loại vở này không? Vì nếu mua thì số vở dự định bị hụt mất hai quyển. Tính số tiền bạn Toán mang đi?
    Phân tích: Vì số tiền bạn Toán mang đi không đổi, nên ta có thể xem giá tiền của mỗi loại vở là chiều dài của một hình chữ nhật và số quyển vở là chiều rộng của hình chữ nhật đó. Vẽ sơ đồ:

Giải: Nếu bạn Toán mua số vở loại 2500 đồng/quyển bằng số vở định mua loại 3000 đồng/quyển thì số tiền còn thừa là:

    2 x 2500 = 5000 (đồng)
    Sở dĩ có số tiền thừa này là vì giá vở đã giảm:
    3000 – 2500 = 500 (đồng/quyển)
    Vậy số vở bạn Toán định mua loại 3000 đồng/quyển là:
    5000 : 500 = 10 (quyển vở)
    Số tiền bạn Toán mang đi là:
    3000 x 10 = 30000(đồng)
    Đáp số: 30000 đồng

Các bạn thử dùng sơ đồ diện tích giải các bài toán sau:

 Bài 1:Một ôtô đi từ Vinh đến Hà Nội dự định đi với vận tốc 30 km/h. Nhưng do trời mưa nên chỉ đi được 25 km/h, nên đến Hà Nội muộn mất 2 giờ so với thời gian dự định. Tính quãng đường Vinh – Hà Nội?

 Bài 2: Bố bạn An năm nay 30 tuổi. Nếu lấy số tuổi bố bạn An cách đây 5 năm và số tuổi của An bây giờ cộng với 2 rồi nhân hai số đó với nhau thì cũng bằng số tuổi bố bạn An bây giờ nhân với số tuổi bạn An bây giờ. Tính tuổi bạn An bây giờ? 

Phan Duy Nghĩa
(Trường Đại Học Vinh)

Nguồn: edu.go.vn

Posted in Toán tiểu học | Tagged: , , | Leave a Comment »

Cách giải bài toán phần trăm tính lỗ và lãi

Posted by nguyenminhtri on 27/04/2011

Khi hàng hoá được mua về và đem bán thì số tiền thu được có thể tăng thêm (gọi là được lãi) hoặc là giảm đi (gọi là bị lỗ) so với số vốn ban đầu bỏ ra để mua hàng. Nếu giá bán lớn hơn giá mua thì được lãi còn giá mua lớn hơn giá bán thì bị lỗ.

Chúng ta cùng tìm hiểu qua các bài toán sau:
Bài toán 1. Một cửa hàng sách, hạ giá 10% giá sách nhân ngày 1 – 6. Tuy vậy, cửa hàng vẫn còn lãi 8%. Hỏi, ngày thường (không hạ giá) thì cửa hàng được lãi bao nhiêu phần trăm ?
Phân tíchCoi giá bán ngày thường là 100% thì giá bán ngày 1 – 6 là 90%. Cửa hàng vẫn còn lãi 8% tức là cửa hàng bán được:100% + 8% = 108% (giá mua)
Ta tóm tắt bài toán như sau:
90% giá bán = 108% giá mua
100% giá bán = … %  giá mua ?
Bài giải
Coi giá bán ngày thường là 100% thì giá bán ngày 1 – 6 là:
100% – 10% = 90%
Cửa hàng vẫn còn lãi 8% tức là cửa hàng bán được:
100% + 8% = 108% (giá mua)
Số tiền lãi tính theo giá mua là:
100 : 90 x 108 = 120% (giá mua)
Vậy ngày thường thì cửa hàng lãi được:
120% – 100% = 20%
Đây là các dạng bài rất khó hiểu cho học sinh lớp 5 và cách giải của nó:
Bài toán 2. Một cửa hàng bán quần áo cũ đề giá một cái áo. Do không bán được, cửa hàng đó bèn hạ giá cái áo đó 20% giá đã định. Vẫn không bán được, cửa hàng lại hạ giá 20% theo giá đã hạ và bán được áo. Tuy vậy, cửa hàng vẫn còn được lãi 8,8% cái áo đó. Hỏi giá định bán lúc đầu bằng bao nhiêu phần trăm giá vốn mua ?
Bài toán 3. Một cửa hàng bán bánh kẹo còn một số mứt không bán hết trong Tết, cửa hàng bèn hạ giá 15%. Vẫn không bán được, cửa hàng lại hạ giá 15% giá đã hạ và bán hết số mứt đó. Tuy vậy, cửa hàng vẫn còn lãi 15,6%. Hỏi trong Tết thì cửa hàng đó được lãi bao nhiêu phần trăm ?
Bài toán 4. Một cửa hàng định giá mua hàng vào bằng 75% giá bán. Hỏi cửa hàng đó định giá bán bằng bao nhiêu phần trăm giá mua ?
Bài toán 5. Một người bán hàng bán một thứ hàng hoá được lãi 20% so với giá bán thì được lãi bao nhiêu phần trăm so với giá mua ?
Trên đây là một số bài toán thuộc dạng toán lãi và lỗ được đưa về bài toán quan hệ tỉ lệ nên việc giải bài toán trở nên dễ dàng hơn.Bây giờ các bạn hãy giải các bài toán sau nhé.
Bài 1. Một cửa hàng bán đồ cũ định giá một cái mũ là 20 000 đồng. Vì không bán được, cửa hàng hạ giá xuống 8000 đồng vẫn không bán được, cửa hàng lại hạ giá xuống 3200 đồng. Tuy vậy, sau cùng cửa hàng bán cái mũ với giá 1280 đồng. Giả sử cửa hàng đó đã hạ giá mỗi lần theo một quy tắc riêng của mình và nếu hạ giá một lần nữa theo quy tắc đó thì hoà vốn. Hãy nêu quy tắc hạ giá của cửa hàng, vốn mua cái mũ. Tính số phần trăm lãi theo giá vốn từ lúc định giá và mỗi lần hạ giá.
Bài 2. Một quầy hàng bán mứt trong dịp Tết bán được  số lượng mứt với số lãi 20% so với giá mua. Số còn lại bán lỗ 20% so với giá mua. Hỏi Tết đó quầy hàng được lãi bao nhiêu phần trăm so với giá mua ?
Tác giả bài viết: Sưu tầm
Nguồn tin: Internet

Posted in Toán tiểu học | Tagged: , , | Leave a Comment »

Một số dạng toán về dấu hiệu chia hết ở Tiểu học

Posted by nguyenminhtri on 19/04/2011

Trong chương trình Toán 4, các em đã được học về dấu hiệu chia hết cho 2; 5; 9; 3. Hệ thống bài tập vận dụng các dấu hiệu chia hết để giải có số lượng khá lớn và rất phong phú về nội dung và thực tiễn.

Chúng ta cùng tìm hiểu qua các ví dụ sau:

Dạng 1. Tìm chữ số chưa biết  theo dấu hiệu chia hết

Ví dụ : Thay a, b trong số 2007ab bởi chữ số thích hợp để số này đồng thời chia hết cho 2; 5 và 9.

Giải: Số 2007ab đồng thời chia hết cho 2 và 5 nên b = 0. Thay b = 0 vào số 2007ab ta được 2007a0. Số này chia hết cho 9 nên tổng các chữ số của nó chia hết cho 9. Vậy (2 + 0 + 0 + 7 + a + 0) chia hết cho 9 hay 9 + a chia hết cho 9, suy ra a = 0 hoặc a = 9.

Vậy ta tìm được 2 số thoả mãn bài toán là 200700; 200790.

Dạng 2. Tìm số tự nhiên theo dấu hiệu chia hết

Ví dụ : Một số nhân với 9 thì được kết quả là 180 648 07?.  Hãy tìm số đó.

Giải: Một số nhân với 9 thì được kết quả là 180 648 07? nên số 180 648 07? chia hết cho 9. Vì số 180 648 07? chia hết cho 9 nên (1 + 8 + 0 + 6 + 4 + 8 + 0 + 7 + ?) chia hết cho 9, hay 34 + ? chia hết cho 9, suy ra ? = 2. Thay ? = 2 vào số 180 648 07? ta được 180 648 072. Số cần tìm là:

180 648 072 : 9 = 20072008.

Dạng 3. Chứng tỏ một số hoặc một biểu thức chia hết cho (hoặc không chia hết cho) một số nào đó

Ví dụ : Cho số tự nhiên A. Người ta đổi chỗ các chữ số của A để được số B gấp 3 lần số A. Chứng tỏ rằng số B chia hết cho 27.

Giải: Theo bài ra ta có: B = 3 x A (1), suy ra B chia hết cho 3, nhưng tổng các chữ số của số A và số B như nhau (vì người ta chỉ đổi chỗ các chữ số) nên ta cũng có A chia hết cho 3 (2). Từ (1) và (2) suy ra B chia hết cho 9. Nếu vậy thì A chia hết cho 9 (vì tổng các chữ số của chúng như nhau) (3). Từ (1) và(3), suy ra B chia hết cho 27.

Dạng 4. Các bài toán thay chữ bằng số

Ví dụ : Điền các chữ số thích hợp (các chữ cái khác nhau được thay bởi các chữ số khác nhau)

HALONG + HALONG + HALONG = TTT2006

GiảiTa có vế trái: HALONG + HALONG + HALONG = 3 x HALONG. Như vậy vế trái là một số chia hết cho 3. Vế phải TTT2006 có: (T + T + T + 2 + 0 + 0 + 6) = 3 x T + 6 + 2 = 3 x (T + 2) + 2 không chia hết cho 3, suy ra TTT2006 không chia hết cho 3. Điều này chứng tỏ không thể tìm được các chữ số thoả mãn bài toán.

Dạng 5. Các bài toán có lời văn

Ví dụ : Hai bạn An và Khang đi mua 18 gói bánh và 12 gói kẹo để đến lớp liên hoan. An đưa cho cô bán hàng 4 tờ mỗi tờ 50 000 đồng và được trả lại 72 000đồng. Khang nói: “Cô tính sai rồi”. Bạn hãy cho biết Khang nói đúng hay sai ? Giải thích tại sao ?

Giải: Vì số 18 và số 12 đều chia hết cho 3, nên tổng số tiền mua 18 gói bánh và 12 gói kẹo phải là số chia hết cho 3. Vì An đưa cho cô bán hàng 4 tờ 50 000đồng và được trả lại 72 000đồng, nên số tiền mua 18 gói bánh và 12 gói kẹo là:

4 x 50 000 – 72 000 = 128 000 (đồng)

Vì số 128 000 không chia hết cho 3, nên bạn Khang nói “Cô tính sai rồi” là đúng.

Dạng 6. Các bài toán hình học

Ví dụ : Có 10 mẩu que lần lượt dài: 1cm, 2cm, 3cm, 4cm, … , 8cm, 9cm, 10cm.

Hỏi có thể dùng cả 10 mẩu que đó để xếp thành một hình tam giác đều được không ?

Giải: Một hình tam giác đều có cạnh là (a) là số tự nhiên thì chu vi (P) của hình đó phải là số chia hết cho 3 vì P = a x 3.

Tổng độ dài của 10 mẩu que là: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 (cm)

Vì 55 là số không chia hết cho 3 nên không thể xếp 10 mẩu que đó thành một hình tam giác đều được.

Dạng 7. Trò chơi – Toán vui

Ví dụ : Khi được hỏi: “Số nào có bốn chữ số mà khi ta đọc theo thứ tự từ phải sang trái thì sẽ tăng lên 6 lần ? ” Một học sinh giỏi toán đã trả lời ngay tức khắc. Bạn hãy đoán xem bạn ấy đã trả lời như thế nào ?

Giải: Bạn ấy đã trả lời là: “Không có số nào như vậy”. Ta có thể giải thích điều này như sau: Giả sử số phải tìm là , theo bài ra ta có: x 6 = . Suy ra a chỉ có thể bằng 1 vì nếu a bằng 2 trở lên thì x 6 sẽ cho một số có 5 chữ số. Mặt khác, tích x 6 là một số chẵn, tức là a phải chẵn. Mâu thuẫn này chứng tỏ không tồn tại số nào thoả mãn bài toán.

(Kết luận này không chỉ đúng với số có 4 chữ số mà đúng với số có chữ số tuỳ ý)

Dạng 8. Các bài toán khác

Ví dụ : Hãy chứng tỏ rằng: Nếu cho 3 số tự nhiên nào đó trong đó không có số nào chia hết cho 3 thì bao giờ ta cũng có hoặc là tổng cả ba số đó hoặc là tổng của hai số nào đó trong ba số đã cho phải chia hết cho 3.

Giải: Một số tự nhiên không chia hết cho 3 thì khi chia cho 3 sẽ có số dư là 1 hoặc 2.

- Nếu cả ba số chia cho 3 có cùng số dư thì tổng ba số đó chia hết cho 3.

- Nếu ba số chia cho 3 không cùng số dư thì tổng của hai số có số dư khác nhau sẽ chia hết cho 3.

Nguồn: http://www.tieuhoc.info

Posted in Toán tiểu học | Tagged: , | Leave a Comment »

Các bài toán về số và chữ số

Posted by nguyenminhtri on 25/03/2011

Posted in Toán tiểu học | Tagged: , , | 3 Comments »

Bồi dưỡng HSG toán tiểu học

Posted by nguyenminhtri on 08/12/2010

Tài liệu bồi dưỡng học sinh giỏi tiểu học.

Chương I: LÝ LUẬN CHUNG
§1. Phát hiện và bồi dưỡng học sinh có năng khiếu toán
§2. Suy luận toán học
§3. Hai phương pháp chứng minh toán học ở Tiểu học

Chương II: CÁC BÀI TOÁN ĐIỂN HÌNH BỒI DƯỠNG HỌC SINH GIỎI
§ 1. Cấu tạo số tự nhiên
§ 2. Dãy số cách đều
§ 3. Hai phương pháp chứng minh toán học ở Tiểu học
§ 4. Toán chuyển động đều
§ 5. Toán hình học
§ 6. Một số dạng toán khác.

Download
(Sưu tầm)

Posted in Toán tiểu học | Tagged: , | Leave a Comment »

 
Theo dõi

Get every new post delivered to your Inbox.

%d bloggers like this: